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":' Surnarv. 'l

P, In this report we derive the solution of the I -minimal weighted

sensitivity problem with 1 pole/i zero sensitivity weighting functions

for stable minimum phase rational plants with an input delay. We calcu-

late the explicit feedback compensator and analyze its stability.

Although we have a technique for approximating these compensators with

proper compensators, the full description of this, along with an analy-

sis of stability robustness will appear In a future report. Another

* report will also cover generalizations of this work to plants which are

unstable, to plants which have right half plane zeros, and to the case

of a more general sensitivity weighting function.

Preface.

The results presented here expand upon the work initiated in Appen-

dix B of [Flamm 1985a].

Purpose of Research.

The goal of this work is to obtain and analyze explicit compensa-

tors for delay systems which achieve or approximate a closed loop sensi-

tivity function minimal in the at -norm. A major premise of this inves-

tigation is that all real systems contain delays, so that it is
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only by examining the optimum for such systems that an understanding of

achievable performance can be obtained.

We shall also examine the robustness of the stability of N -optimal

sensitivity compensators with respect to changes in the delay present in

the plant. We show below with a simple example that e-minimal sensiti-

vity feedback systems are not necessarily robustly stable with respect [

to the addition of a small delay in the feedback loop. This means that

S.there Is something wrong with the 2 sensitivity problem as commonly

treated. As a consequence of this lack of robustness, the resulting

feedback system is ill-posed in the sense of [Willems 1971] pp. 90-91.

We remark here that the ill-posedness for the feedback system seems

to be a result of the memoryless part of the opened feedback loop having

gain which is too large. See [Willems 1971) p. 100. From this point of

view a strictly proper approximation to the optimal compensator for an

1 problem for a rational transfer function plant will likely result in

a well-posed system. Nonetheless, it is troublesome to use the formula-

tion of a problem for which the ideal solution is ill-posed.

For plants with a delay in the input, which we shall consider in "

this report, the optimal feedback systems will be well-posed, according

to [Willems 19711 Corollary 4.1.1. precisely because of the delay in the

plant. (This conclusion depends upon the nature of the optimal compen-

sators for these systems. We examine this later for the case treated in

this report, and see that. although these compensators are unstable, and

in fact have infinitely many poles in the right half plane, they are not

anticipative.)

We also intend to test the conjecture that designs for systems con
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ta"ming delays will provide a means of obtaining compensators which are

robust for high frequency phase uncertainty, such as that resulting from

right half plane zeros of the plant for which the designer of the com-

pensator is uncertain of the location.

We note that in the example used below to illustrate the

ill-posedness of the e optimal feedback system for the purely rational .

plant. [Zames and Francis 1983] p. 592 VI.A. remark that the optimal

"Q" parameter is a lead filter. Since this has a certain intuitive

appeal (which those authors suggest), we would like to examine how this ,

may extend to the case of delay plants. In particular, we are led to

ask, in what manner can we look at the delay in terms of right half

plane zeros: for example, as infinitely many zeros at the point -?

Finally, we hope to provide conceptual insight into the reason

delays limit the sensitivity of a compensated system.

We also regard the delay problems considered here as a first step

towards considering similar design issues for other infinite dimensional

plants.

An Example of Ill-posedness of the i -minimal Sensitivity Feedback

System for a Rational Plant.

CO.
The importance of understanding I-minimal sensitivity design for

delay systems is emphasized by the fact that designs which achieve

I -minimal sensitivity for finite dimensional systems are not generally

stable when a small delay is added. We illustrate this fact with a

1This point was suggested by Gunter Stein.
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simple example. ;.'

In rZanes and Francis 1983. p. 593] the solution to the -minili,..

~sensitivity problem is comrputed ffor the case off a stable plant with two

right half plane zeros. We consider this example here. Let

Po = (b,+s)(b2+s)- P1. with ge(bt)>O and b,+ba 6 R.

be the plant. where P, Is st~able and minimum phase. and let '!

~~~s+l "'-V wi thP0
'.be the sensitivity weighting function. The optimal "*Q" parameter is

I ~ D(c-s) I.(b,+s)(b2+sL_-,Q(s) =[-w(s)(c+s)-, (b,-s)(b2-s) ' ..

i 
, . where D and c are constants determined by P and the bts. D may be post- '""

rive or nexative, depending on whether 0 > I or 0 < 1. (We will not '

show It here, but 0 < I is the only interesting case.) We assume D is

positive, for J3 < 1. Then the optimal feedback compensator is ''

."

Now suppose that the true plant is really P~s) =e-aS PO(s), with

00). We check stability for the closed loop system with true plant and

compensator designed or the nominal plant P by computing p and

checking the location of its poles. A straightforward coLeutation gives

+s)(= beSeD(c-s) + [W(s)(c+s)-D(c-s)]  """
We now show that this Is unstable by showing that the denominator, call

7.J

it K(s). in the above expression has Infinitely many right half plane -'-"

~J..

zeros. .2j
For this we evaluate M(s) on the imaginary axis and separate it

into real and Imainary parts M(t ) = F(w) + tG(e). Now we show that

F(ow) has only nitely many real zeros, and conclude by appealin to

[Pontryagin 1955]. Theorems 3 and 6. that D(s) has zeros in the right
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I.'
half plane.

A computation gives A

F( = 2D(cos(eaw) - "'] + wD(P3-c)sin(.i) + PcD~cos(w.i)-l] + c.

Since D > 0. this equation cannot be satisfied for sufficiently large w.

and we conclude that F(w) has only finitely many real zeros. Therefore,

D(s) has zeros in the right half plane.

Problem Considered.

We consider the i optimal sensitivity control problem formulated,.

in (Zames 1981]. but with plants of the form P(s) = A(s)+e B(s). where

A and B are proper rational functions, and AO. The block diagram in

Figure 1 shows the feedback system we are considering.

d ,

Figure 1. Feedback system considered.

The problem is to minimize the I norm of the weighted closed loop

sensitivity. X(s) = W(s)[l+P(s)F(s)] -l over all stabilizing feedbacks

F(s).

In this work we consider only weighting functions which are ratio-

2nal and bounded away from zero at ". The reason for the rationality

assumption is simple convenience, and the fact that nothing seems to be

2The importance of this was suggested by Gunter Stein.
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lost from this restriction. If. however, strictly proper weighting

functions are considered, since the resulting optimal weighted sensiti-

vities will be all-pass, the corresponding unweighted sensitivities will

be unbounded at -. This would be an unacceptable design, were it really

to be used. As above for the question of ill-posedness. it could be

argued that real implementations will use proper approximations to the

optimal compensators. Then the unweighted sensitivity will not only be

bounded at infinity, it will have value 1 there. However, since the

approximation techniques presented in the literature. [Zames and Francis

1983] and [Vidyasagar 1985]. achieve sensitivity with norm arbitrarily

close to the optimal by approximating the optimal weighted sensitivity

to higher and higher frequencies, these techniques cause the unweighted

sensitivity to grow as the approximation improves. A trade-off would

then be required. Since bounded sensitivity is a real design con-

straint, which proper choice of non-strtctly proper weighting function

accommodates, the use of such a weighting function seems to be the natu-

ral way of providing the trade-off.

Our solution will start with a more narrow problem, and proceed

stepwise to generalize the solution. The sequence of problems to be

considered is:

A. A-O and B is minimum phase and stable, with sensitivity weighting
function W having one pole and one zero. (A=O is the case of an
input delay.)

B. W is any stable rational minimum phase weighting function.

C. B can have right half plane zeros.

D. B can be unstable.

E. A is non-zero.

November 22. 1985 Page 6



Since the optimal compensator will in general be non-proper, we

also consider the problem

F. Approximation of the optimum compensator with proper ones. -

As part of our solution, we will examine

G. The stability properties of the feedback compensators we obtain,
and

H. The robustness of stability of the resulting closed loop system 5-.
with respect to perturbation of the delay interval and pole/zero..
locations of the plant.

In this report we discuss problem A. and the issues in F and G as .

applied to A. Subsequent reports will cover the other problems.

Derivation of Optimal Sensitivity.

Formulation. The calculation of the optimum sensitivity for this

case was first presented in Appendix B of [Flamm 1985a]. The following

re-derivation is presented in a form that lends itself to generalization

to the succeeding problems.

The transformation of the problem to the form

tnfoo ItW(s) - +H(s) II, (1)
Heim

is standard. See, for example. [Zames and Francis 1983]. Here W(s) is

the sensitivity weighting function and 9 is the inner factor of the

plant. (We have assumed that the plant is stable, and that the weight-

Ing function is stable and minimum phase.) In problem A, W(s) = 2- ands+j3

S= e-SA Note that we have normalized the weighting function so that

r

November 22, 1985 Page 7
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its zero is at the point -1.

Our approach is based on [Sarason 1967]. to which the reader is

referred for the mathematical justification of our work. Since we shall

deal with operators which are not compact, we cite Theorem 1 on page 179

in that paper for the general case. However, since we subsequently

establish that the particular operators in which we are most interested

have maximal vectors, it is really Proposition 5.1 on p. 188 that we

require. The work in this report is further substantially guided by the

whole of 7. pp. 191-194.

In order to follow [Sarason 1967]. we view [W(s)--(s)H(s)] as an

operator on N2. The compression of this operator to K = ) e 412 is

equal to the compression of W(s) on the same subspace. Call this latter

operator T = rKWIK. The infimum in (1) cannot be less than the operator

norm of T. Theorem 1 in [Sarason 1967] says that the desired infimum is

in fact equal to lITII.

Solution Technique. In order to calculate this norm. we first

characterize K = (4d2)1. Suppose f. h C L2 (O.) and denotes Laplace

transform. g = 2(g). If f(s)K. then

(f(s).e h(s)) 2. for all hE-
2

S(f (W). eh(tjPL 2

by Parseval's theorem. Therefore f(t) = 0 a.e. [A.). Conversely, if

f(t)EL2 and supp(f)_[O.A], then fC(40 2)±. Thus

K = 1~)1 = :~L2 [O._) and suVP(f)q[O.A]"

November 22. 1985 Page S
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where "W denotes convolution. Accordingly, for fEK,

Tf = • [u(t)-u(t-A)J (t-r)f(T)dT. where w = 9-'(W).

J-sA

It is easy to see iK(WIK) = s...W(s) IK. So
", OF

1. -sA -sA -
"ITwI =u If s .:.:,:.:) I

KK s K-

sA %
1 - e h l = 1 

: , -'

sup I[w(t)*(uCt)-u(t-A )hC(t)](U(t)-u(t-))112

= sup It(W(t)w .(t))(u(t)-u(t-A)).
supp(a)q[O-A]

111112=1

= s IW(t)-eCt)1Id)2"
sup dO%= IIVII

where V is the operator on L2 (OA) defined by -

V)() = J(t-r)f(r)dT. (2)

way to find this supremum is to use the facts that AIIn = IIV VII

(via the definition of adjoint) and that p(V V) = IIV*VII since A is

normal [Rudin 1973. p. 282]. Therefore IIVI = p(V V) , If V is compact

we need only find the largest eigenvalue of VV. but this will not be

the general case. However, since in our case V is the identity plus a

compact operator, we have only slightly more complication: Since we

shall have V*V-I is compact, we know from Weyl's theorem that the spec-

trum of VOV and I differ only by eigenvalues. [Halmos 1967. pp. 92 &

November 22. 1985 Page 9
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295]. Therefore. a(V*V) r. c(VI*V-I) U (1).

% Thus we can find the norm of T by finding the largest eigenvalue of

V*V. We do this is two steps: F

0 compute V *V.

* Solve the eigenvalue/function problem for this operator by trans-

forming the eigenvalue-defining equation to a differential equa-

tion.

We note that the operator V is equivalent to T via the Laplace

transformation. In particular. there Is a one-to-one correspondence

between eigenvectors, and the elgenvalues are the same. Furthermore,

compactness of V Is equivalent to compactness of T.

Computation of V*V., VE is defined by (x,Vwy> (Vx.y). so we just

compute:

(Vx.y) V -wt)xt1 d (We have used the fact that

ro both wn and V have their

support on [0,-).]

Using the fact that

w(t-r (T ) + WO(t-T) =+ (-5* t ~tr

we then have

y~t)(w~)*x~)) = rIOK F 0(t-T)X(T)dr + 6 wx(t))dt

7. e X(T)dT + x(t)) dt

November 22. 1985 Page 10



"k ~ ~ -'.7 7- T RT! WI 7 3 3 )wgj0.3 % ?r.-rod. -I7r-- -F . W 4 a "a .

= IYI-)e od'r)( e OTX(Tr)d-r)]

r[f t (r1epdT].Cept-x(t)]-dt + Utxtd

= rX ()WO(T-tOdTdt M rxt)L()WO(T-t)dTdt

= Jx(LLJ (T)Wo('T-t)dr + (6*y)(t)Jdt

Vi V rY(T)W(T-tOdT. (3)

Solution of eixenvalue Problem. We want to solve .

4- = V'Vf (V0+6)4*E(VG+6)*f I

=(VGV0 + VO+ V0 + I)(f).(4

Now let

y =f r W~-~fT for t4rOA],
and let

4. z =V W ~u(T-t)U(T)dT for te[O.A).

November 22. 1985 Page 11



Since w(t) 8 + (1-)-e , we can take

d' -,x + f

= (1-1)-xx + f

d
dx2 = - (1-X)2y

Z = X2 +

as a state space model for V*V valid on [O.A].

Boundary conditions are given by v(O) = f(O) and z(A) = y(A). This

is equivalent to xi(O) = 0 and x2(A) : 0 (if 13 # 1: we see later that

this Is no restriction).

More concisely,

x =][j+ (5a)

z =[-1 ]-x + f (5b)

with0 [ (5c) L

Now we set z = ?bf in order to find the eigenfunctions and eigen-

values of V*V. Then

(X2-l)f [ (_-1 1]_X (6)

replaces (5b).

Differentiating this we get

= (1-13ij

=~~~~ 01-1 -J4-V ~ + [!]f] i

=P (1 1 ] . 1 (7 )

Differentiating again, we get

November 22. 1985 Page 12
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_AI)r lI-P 1].r- ) ]2 ( )2 P]hx + [, 1 .]I~

= [ -1 -x + [1-P 13 - •3JPl0
9.

=~~~ P11 )[1 2] X + [21 01-) o].[1.f

= p.(zf) + (p2-1)f .

= p2.(X2 1)-f - f + 32f

= (13X2  I 1)-f. .

If %= = 1 then (j32-1)f = 0 implies f = 0 or 1)2 = 1. This latter

case implies 1 = 1. and then our frequency domain weighting function

must be W(s) = or W(s) = 1. These are of no interest since we only

allow weighting functions which are non-constant and outer. Thus we can

assume that ; 0 1. and we get

*;1 = ( S) ::

x2-

Boundary conditions follow from (5c). (6) and (7):

(X=-l)-f(A) = [1-13 1).x(A) ..

= (13)x1 (A.)

=(1-P). "0 e-p &  f (T)dT = f

(X 2 l)f(O) = [-2(lp)2 p3)x(O) .

1.x 2(O)

=/p.(X 2-l).f(o).

Thus 1() = Ie-PAuJF(r)dT (9a)

X2% 
,

November 22. 1985 Page 13
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and P(O) = 1f(O). (9b)

Now it appears that we could have

(1) 0.-iO (ii) I 0 or (iii) l < 0.

X_ 2_1 X2_

We consider each of these cases in turn.

Case (1). This implies f--O. Then f(t)---t + a, but f(O)=--f(O) . -

implies f(t)=m(t+l). and we normalize by assuming m~l. Then (i) gives

x2 P2 i .

or

The boundary condition at t A A gives us

P*& + I . - -le-P CA-r)(PTr+I)d-, 1- (lBe- A P+l)eP'dTr. ?

A3A+ (fr1~d 0 _1_ J3-

This implies

A+l}( L= -1= (P-+l)epT'dr = -e e- dr + ep'dr

P Ae"

Thus (X2 -l) : A'-+-' and substituting x= L we get
/3A+1 P32

(A+1)-9 - AP 1 = 0. This implies that

&3 2 +4- A+? (11
2-(A+l) - 'A+l

S+,
By assumption />0. and so we must have P=l. But then W(s) : s : 1.

Thus case (i) is excluded.

November 22, 1985 Page 14
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Case (ii). In this case
a22,

f = e h + ae h with h2-- \-1

For later reference we note this Implies

= (10)

ii 1t 2 -132

We assume without loss of generality that h>O. Then the boundary condi-

tion. (9b) gives us

kt a-lt =13( + a). or a=

Boundary condition (9a) gives

Mt -Mt 1- 3 (A-T) fr -ktT
e W e = X21re(eT+a -e )dT

e *r

e-1 +1Ar

using (11). A little algebra gives us

*Ah e-Mt IJ. e . hA e-ht.]

and

k.(OA *-kA )+ h(lA + eItA) h~..(A *-hA)

so

November 22. 1985 Page 15



k + P-coth~h.A) P

Substituting for 2 from (10) we get

0 - + P-coth(h-A) + 2 [

= It + P-coth( oA) + (k+p) - - :
(k+lA

k + P-coth(koA) + (k+p).( +± - 1)

>. -

since k>O. A>O. and therefore coth~hA) > 1. This is a contradiction.

and thus case (ii) does not occur.

Case (iii). In this case

f = cas(wt+P) with (X)(12)

X2_

Note that this definition of implies 2 1 + _ Evaluating the

initial condition in (9b) we see f(O) Pf(O) implies -wsin(p) =

jcos( ). o~o implies cos(p)O. So tan(.) : -P. and therefore

=-.,c, and = cos(p) . (13)2 - si ) A

The initial condition in (9a) gives

cos(WA + i1 = f(A) = e •*A repcos(." + O,)dTx2-1 "-

=1-1.. 3.. wi(c+p + * cos(A.sP+) _ c'sin(op) + 13cos(,p))
X2_1 •-13A(p ) '2+ .2.

:L__..[wsin((a A+ ) + cos(a'.) -e A. sin(qp) + cos)]
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2 2.... S 1 cos( p)sin(wA+*o) - sin(o)cos(€0A+,p)
X -1 ( =J32) -3 '.'*

e ( cosC,,*sinCo) -sinC, )cos(.p))] .'

= L . sin( A)

X2 -1 (132+j2)%

Expanding the left hand side. we get 4

cos(wA)cos(*) - sin(Aa)sin(o) = (1)sinCwA)(_21)."(J +P 2)% i.

Combining this with the conditions from (13) we get

.Ocos(wA) + 1-sin(wA) _(l-0)sin( A). (14) "
?2

If cos(wA)--O, (14) implies that 1 = L___ and therefore X2  1

pX2
But we must also have from (12) X2 = 1 + and so 1 +

2 cocld ~ 2 (j3p

which implies c2 = 1. We conclude that cos(w)--O only if i = 13. Con-
1

versely. if = W 2 (12) implies X 2 -. and so (14) Implies w-cos(wA) :

0. Then cos(wA) = 0 since we have assumed cwOs. So cos(wA) = 0 is equi-

valent to W .3 But cos(wA) 0 amounts to &A 2 - , an then from

"13) = S ? 1 12 r 2A is an eigenvalue when

1 [(2 j • We see below that when 6 = and we also have

> 1. it is the largest eigenvalue.

If cos(wA);iO, then we have

(P i~~tan(wjA) LJtan(cA).

"7l

Substituting from (12) for (X 2-l) we get "
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t ci= - 0 -tan(wA).

2F
Since cos(aA) ;4 0 implies w ; a. we conclude

-n(wA) I(15)

For given 13 we can numerically solve this equation for w, finding multi-

ple solutions. From the definition of , in (12), these solutions give

us the etgenvalues of V*V via X2 1 + 122 w2+1 We wish to pick

the one among solutions to the equation for w that gives the largest

eigenvalue. We see that there are two cases:

* If 13<1 then we should pick the smallest solution for w (--0 has

been excluded by our consideration of case (iiI)).

If >1, we should pick the largest solution for w, but one can

see from Fig. 1 that there is no upper bound on solutions to (15).

Thus there is an infinite sequence of eigenvalues approaching X2 =1

from below. (This means that V V is not compact, as we already

knew.) 1

As pointed out above, the spectrum of V*V is the set of eigenvalues

augmented possibly by {}. Thus for >1. the spectral radius of V*V is

1. and therefore IIVII=.

For 1<. we also have l4uaV*V). but this does not affect the spec-

tral radius since the largest elgenvalue is greater than 1. It is easy "
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to see that the eigenvalues of VWV are contained in [X2 n 1) for >1.

and in (l.,\2 for P(1.

Since the open loop system has sensitivity of norm 1 for the case

P > 1, the optimal sensitivity is attained by H"O in (1). that is. zero
feedback. In other words. IIWII, = 1 when P > 1. and this is the infimal

sensitivity according to the above argument. (We note that W is not

inner. For non-compact operators. minimal dilations are not necessarily

unique or inner.)

To summarize the situation, we have found two cases of interest:

either there is an eigenvalue of V V equal to the norm of T, or IITII=l,

and we can find a sequence of eigenvalues of V V approaching 1. This

will be used below to compute the minimal dilation of T to i2 in the

first case. In the second case W itself is a minimal dilation of T to

s2.
,°.-

For later reference we note that. using the definition of X2 from

(12). (14) implies

P, = i.-sin(w.A) - cos(wA) (16)

sin(wA) + (,*cos(.A)

The solutions of the equation tan(WA) = l can be characterized
( 2-P .--

graphically as indicated in Figure 2. (Notice that we always have 3>0.)

r
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I €

-. Figure 2. Graphical solution of (15). .

From this drawing we can see that the case 13 = (~ )T corre- ,"'

K. sponds to the coincidence of vertical asymptotes of" y = tan(Aw) and

[°- U= {1 If j = the asymptote will be the one closest to the

origi for an(Aw. The the the cgnvWaluswl orsodt a

er values of ,. and thus will be smaller when 3 ( 1.=[_

J%

. #, Calculation of optimal sensitivity for 8(1. As part of this solu- "--
tion for 1(1 we obtain the eigenfunctgon f for the largest eigenvalue of

V-V. This f is a maximal vector for V. and so we can follow the method >:.
in Sarason to compute the minimal dilation of T to (1.

(2nlo 2. "

"-° The following applies to all elgenfunctions F, but gives us the ..

-'Frminimal dilation of T only for the case where F is a maximal vector for

V-.

oiiLet o be a solution to (15). When wi corresponds to a maximal

vector, according to the proof of Proposition 5.1 in [Sarason 1967].

T/IITII, will be interpolated by an inner function given by T-^, where of

*IITII= '. -

N Thisovember 22. 1985 Page 20in ti
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Tf

be valid. First we calculate

JL[(t-T) ' VPe CSWT )

=cos((J0 t+*p) + (l-1)Je-PtT COS(W0T+ *)dr

cos(wIt+,P) +inOaipe

Then

Ti _ (Vf)

-f (f
=1+ * $ersin(w~t)*_(u(t)-u(t-A))j

= j 1 + tP Vrsint; at)*) -u()-u))1

$ftsinos((ut)+i-()) =-t-wtA

- S 6(s (s)
1-e M a~to

-~~ 2i~- ~~tcA
(s 2+miO ) -( tw)

-sa W -WO

wp + e rs-sin(jaA)+w0.cos(w 0.A) 18

2 2

1-e~ s(sttc) (Ji0 O

-s2

-s --e Cs-cos(cw0A) - psin(wpAa1(9
2 2

s 41(JO
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Using (1S) and (19) in (17). we get

0..

2!. = + "

(l-3) - 0+ e-sa- (s-sinw0Aa~oOS~0A) 1-Ss

=1 + -s (l-()r" e -(ssna 0A+(cos A)] (20) ,.-..-

-o(1+s)+e [s(cwocosoA+3 sinioA)+o(PcosOoA-wosinmoA)]

When f is a maximal vector for V. (20) is the optimal weighted

TP2
sensitivity, and __X

2  We can then compute the optimal feedback

compensator for the case P3 < 1 as in the next section.

Remark: As A -o0. -1. and as A - X This can be' max " h a

seen as follows: From Figure 2. as A - 0 . o increases. For large wo.-

(I+0~+) -. As A-'0, tan(Aw)-ZAc over an increasingly larger interval.

2-p _O"

Thus the smallest solution of (15) is given with increasing accuracy by

Aw : -. o 1+0 =S+. 1e find X2  +0+A . When

2 1+ 1,:

A -m, we see from Figure 2 that 0o -. This gives X2  1 = 1-

Calculation of Optimal Feedback Compensator for 13<1.

The optimal weighted sensitivity in (20) can be written
-sA -sAF

wo[-s+e (s-coswoA-wosinwoA)] + e (s.sinwoA+wocoswoA) - woaj

ao[-s+e (s.cosjoA-wosinwioA)] + P[-uo+e (s-sin OA+wOcosOAo)]
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s(+e A oscioAe s nwoA) + w'eS (coswjoA-wosinwoA) -wo

S.(-Waj+eWocosoA+SA PsirviOA) + waoeSA (JPcoswaoA-cajosinaioA) &03c'

where wo is the smallest solution of (15). We want to find the feedback

F which results in this weighted sensitivity. We have X =W(l-PQ) and

F- Q so F =_l-PQ "

get ND- asID(+

Taking X =.,we gewith..i= slD-s1)
D PN (s+j)e~ N it

SA -sA -sA
Ns(kie -io) + Ie -wo and Ds(heS -WO) +k 4 eS &0W

-sA -sA_ 1 sA -sA
5~l VtC %W)+k14e I-"&' (hij'ste -WO)+1hze -

IS I - (S(p) I
F1

-sA ( sA -sA
Poe (s+) ~ke -W&O) + h2e -o

=SA 2aooso sncA. SA = c sA - SA _

hi (iocosioA + sinwoA an k =JCS(O cao~o(J -Wsi!(JOO

Substituting for the h ,s we get

F_ HS
Poe
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(11)sinwaoA(wS+s 2)

2SA 2_p)ASA-S [sinoA+ocosajoA-uioe )+sE(ao psirvaioA-(3+ 1 )waocosoA+(+ 1 )woe ]+

13ao(wosirxoA-coscaoA+e )A

a'.a

PoeS

_S2(sinoA+(ocosioA)+s2((W-3)SiuioA_(3+1)caOCOSaiOA]+

j3wo(osinwoA-cosaioA)+ e Acio~s +(13+l)s+3)

-sAPoe (sincwoA4wocoswioA)

2 0~io-ooo sinw~oA+wojcoswoAl (jsinwA-wcoscioA

Lsin~oA~uocoswoA sinwioA+wocoswioAj sinw,0A~socoscA

+ waoe SA s +(13+1)s+3

sinGwoA+jocoscA

Using (16) we get

F=

PO((sinoocos~oA)(s 3 )esA + O3+plS]
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2  sinoA+jocoscjoA _2 -s2

+(P+I)S~oS+A.2+%%

Takinge Wo 2 -'i^o ndr

s=+(/ +t) s+/ le-S+P

Taking C, : - -slnoA and C2 :(the expression for
WO WdO

C2 is simplified below) this is

-. -1 5 ('IW 1
F =Ci-Pa

s2+(P+1)s+P 1 + e-SA-{'2 -s+

which can be realized as shown in Figure 3.

U~- 02-~- 3 1.Fu

- Fligure 3. Realizaton of Optinml Compensator

"-" Since the opimal PQ is independent of he ouer prt of P. Q and

thus F will in general be improper. It is necessary to find a proper Q

• for the compensator to be physically implementable. -

"-.'"Proper Approximion of O,timal Feedback Compensator.

'.] The only procedures in the literature for this purpose seem to be

.. ,given in [Zanes and Francis 1983. p. 591) and (Vidyasagr 1985, p. 178].

-'.',However the procedure in [Zanies and Francis 1983) requires the
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evaluation of the term B (o) . where B (s) is the Blaschke product formedz z J."

from plant zeros. In our case there is no Blaschke product involved.
L'.

but rather a singular inner function. If we interpret Bz(s) to be this

inner function. Bz(-) is not defined. In fact this procedure does not

work for our case.!'
The procedure in [Vidyasagar 1985] does not work for our case

either. The essence of the difficulty is the same as in the

Zames-Francis procedure - the inner factor of the plant is not contin-

uous at infinity.

An explanation of why these techniques do not work is given in

[Flamm 1985b]. The analysis there does suggest a means to accomplish

the approximation. A full discussion will appear in Part III of this L
report, but the graphical argument presented in [Flanmm 1985b] to show

why the other procedures do not work motivates the following approach.

The essential idea is to roll-off the ideal Q-parameter with a

transfer function for which the Bode magnitude plot has slope less than

1. so as to limit the phase deviation due to the roll-off, until suffi-

cient attenuation has been obtained. This this can be accomplished, for

example, with a lead-lag network which approximates such compensation by

having average slope magnitude less than 1.

We note that any stable Q-parameter results in a stable closed loop

system, so that this roll-off technique preserves stability just as the

procedures for the isolated right half plane zero case do.

% %
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Stability of Optinal Feedback Conensator.

The compensator is of the form 
Ile

(s+P) (s+ll)+e-S 2(s-P)

Since Po is minimum phase by assumption, the problem amounts to deter-

mining the stability of the term -SA Equivalently, we
(3+1)+e C2(S-P)

ask whether l+e C2 r~l has zeros in the right half plane. We answer

this question by proving that l+e-SA Cr2 s has finitely mnny zeros in the L

closed left half plane, and then conclude by appealing to Picard's theo-
l-SAfz1".

remn that has infinitely many zeros in the right half plane.

First we note that le-SAI > 1 for s in the left half plane, and L4

ISAIe-Il < I in the right half plane. Now all zeros must satisfy

e-- , and therefore all closed left half plane zeros

satisfy NSA So all closed left half plane zeros lie on or

inside the intersection of the ellipse = with the closed left

half plane. See Figure 4.

--- (s) .I -_ 1 ""

S I " TC 2.7

se (s)

2 C2+1 C2-

°-t
4

Fixure 4. Rexion for possible left half Plane zeros.
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Thus all closed left half plane zeros lie in a compact region, and

we conclude from analyticity that there are only finitely many in that

region. Picard's theorem tells us that there are infinitely many zeros.

so that we must conclude that there are infinitely many in the open

right half plane.

We can actually get more detailed information about the distribu-

tion of the right half plane zeros without much more trouble. As stated

above, the right half plane zeros must satisfy s -.. As,..J~S~ > sTlC27'

1st -#o. s- 1. Therefore as Isl - . the zero set {zt} approachesInCI and ,,.-'
the line I e . which is the same as ge(s) and

IA2

tn(zt) - (2n+l)v. Also, since right half plane zeros must satisfy '.

< (by comparing distances from P and from the point -1). we

have It2l" < Ir~l. Then since le-SA
IS2I I Is+l T C

and we conclude Se(s) < A for these zeros.

The fact that H(s) = (s+l)+e SA(s-0) has right half plane zeros

can also be obtained from results on the distribution of zeros of entire

functions. (See [Levin 1980] Chapter 7, S4. p. 323, Example 1.) For

our purposes it is more convenient to refer to the earlier work 01

[Pontryagin 1955].

According to theorem 6 in this latter paper it is sufficient to

show that the function G(y) = y-.cos(yA) + sin(yA) + r . has zeros which

Noe. 2
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are not purely real. 3 To see this all we need is to recognize that G

has infinitely many zeros. (To show this we can use theorem 3 in the

same paper.) SettingC(y) = 0 we get

-9rcos(LA) = sin(9A) + C2"9.

For real values of y, the left hand side of this equation has the lines

z = ±V for an envelope, whereas the right hand side oscillates with

deviation I about the line z = C2-y. Since IC 21 > 1, for some value Yo

there are no more real zeros for 1Y1 > Yo.
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3L

3Theorem 6 says that If we evaluate H(s) on the imaginary axis. and
split the resulting H(ty) (yC1) into real and imginary parts,
H(ty) = F(y) + tG(y) with F(y) and G(y) taking only real values.
then necessary and sufficient conditions for H to have all its zeros
in the left half plane are that (I) F and G have only real zeros.
that (it) these zeros alternate, and (iit) for at least one value of
y. G'(g)F(I) - F'(U)G(y) > 0. Thus we need only show that G has a
complex zero to establish that H has a right half plane zero.

4From (15), 8 = 1-- cosOA. Using this in the defini-tion of C 2,

l+Wj° T oi+la 1 Wa0+l"

C2 = -- coswoA. Therefore = , where we

have used (15) to substitute for tan(woA), and simplified.
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